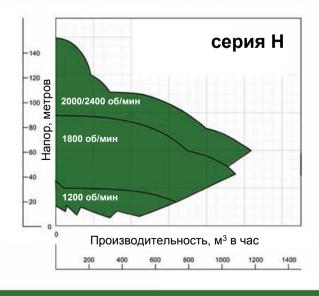
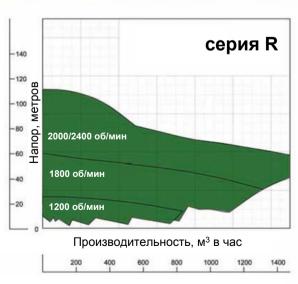


Официальный дилер CORNELL PUMP COMPANY


CEVPXO3UDOEKT


+7 (495) 651-61-33 • SELHOZPROEKT.RU • 6516133@gmail.com 127550, г. Москва, ул. Большая Академическая, 44, офис 913

ИРРИГАЦИОННЫЕ HACOCЫ CORNELL

CEVPXO3UDOEKT

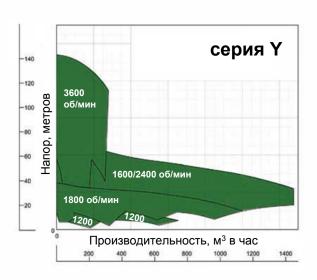
ЭНЕРГОЭФФЕКТИВНОСТЬ

Насосы Cornell имеют наилучшую в своем классе эффективность. В зависимости от времени эксплуатации, потребления топлива и требуемой мощности Вы можете экономить на электричестве от \$3000 в год. Cornell производит более 35 ИРРИГАЦИОННЫХ насосов, которые соответствуют стандартам максимальной эффективности для центробежных насосов или превосходят их.

ВНЕШНИЙ ГИДРАВЛИЧЕСКИЙ УРАВНИТЕЛЬНЫЙ ТРУБОПРОВОД

Внешний гидравлический уравнительный трубопровод CORNELL уравнивает давление между зоной втулки рабочего колеса и всасывающей зоной насоса, что позволяет снизить осевую нагрузку, действующую на рабочее колесо, вал и подшипники. Уравнительный трубопровод также помогает вымывать песок и ил из сальника в область низкого давления во всасывающей зоне насоса, что уменьшает износ трущихся деталей.

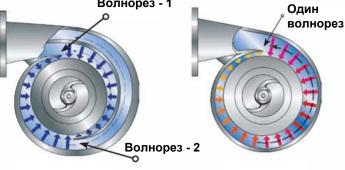
ИСПОЛЬЗУЕМЫЕ МАТЕРИАЛЫ


Во всех ирригационных насосах Cornell используются материалы высшего качества: ковкий чугун, бронза или легированная сталь. В абразивных или едких средах возможно использование дополнительных материалов.

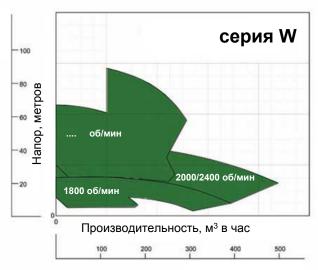
Стандартный комплект включает в себя сбалансированные рабочие колеса, сверхмощные валы, заменяемые втулки вала и кольца для компенсации износа.

ДВУХКАНАЛЬНЫЙ ОТВОД

Компания Cornell более 30 лет назад, первой в отрасли, начала использовать двухканальный отвод. Система двухканального отвода эффективно уравновешивает силы в насосе, что позволяет снизить радиальную нагрузку, провис и усталостные нагрузки на валу. Это исключает деформацию вала, увеличивает срок эксплуатации сальников, механического уплотнителя, колец для компенсации износа, подшипников и поддерживает высокий гидравлический КПД.



Выбор высокоэффективной модели насоса:


8H — 88% 6RB — 89%

5RB — 86%

Двухканальный отвод

Одноканальный отвод

НАСОСЫ ДЛЯ НАВОЗНОЙ ЖИЖИ

Cornell предлагает более 60 моделей сверхмощных насосов для работы с жидким и полужидким навозом. Вы можете выбрать именно ту модель, которая соответствует вашим потребностям, из трех уникальных конфигураций рабочего колеса (закрытая, полуоткрытая и Delta™).

ИСПОЛЬЗУЕМЫЕ МАТЕРИАЛЫ

Насосы для жидкого навоза от Cornell изготавливаются из стали и имеют твердые торцевые механические уплотнители для дополнительной герметизации. Для работы в абразивных средах доступны дополнительные материалы.

ВАРИАНТЫ РАБОЧЕГО КОЛЕСА

Cornell предлагает три уникальных конструкции рабочего колеса для работы с жидким навозом. Рабочее колесо DELTA™ превосходно подходит для работы с длинноволокнистыми включениями и тяжелым осадком, где необходимы низкое или среднее давление. Закрытые рабочие колеса Cornell с двумя и тремя каналами используются для обработки крупных твердых веществ в ситуации, когда необходимы высокая производительность и давление. Полуоткрытое рабочее колесо с тремя или четырьмя режущими кромками может работать с жидким и полужидким навозом при высоких давлениях.

8. 4514T

9. 6NHTA

10.6NNT

11. 6NHT/TH

13. 6NHTB19

12. 6NHTB

14.8NNT

15.8NHTA

16.8NHTH

17.8NHTR

18. 10NNT

19. 10NHTB

20. 10NHTA

21. 12NHTL

1. 3NLT

2.3NNTL

3.4NNTL

4. 4NNT

5.4NHTA

6. 4414T

7.4NHTB

-160				HOIIS	OIKE	РЫТЫЙ
-140						
-120 BOO						
-100 MeT				0	0	0
метров метров (метров метров					6	
-60			•	///		0
-40		0		///	/	
-40 -20		0				
		/				
-20		Троизво		ность, м ³		
-20	Г 10	/	одителы	ность, м ³	в час	320
-20	10	Іроизво 20			160	320

22. 12NHTM

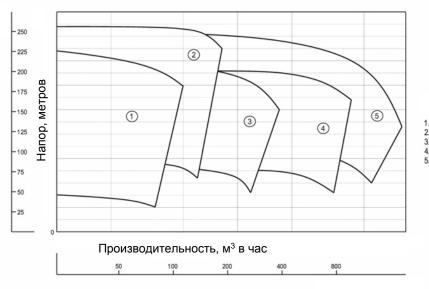
23. 12NNT

24. 14NHG

25. 14NHGA

26. 16NHGH

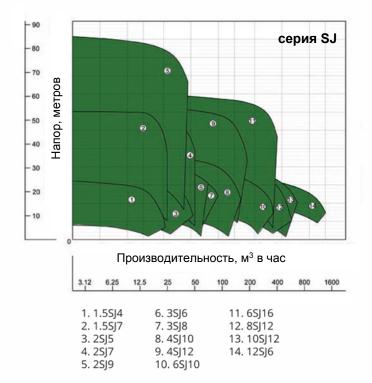
27. 16NHG22

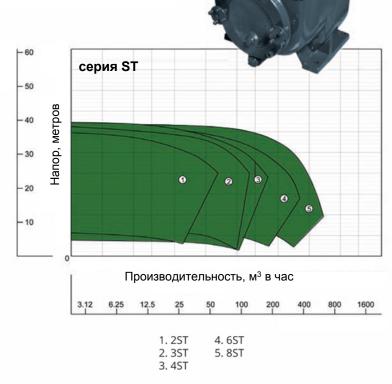

ДРУГИЕ МОДЕЛИ

НАСОСЫ ВЫСОКОГО ДАВЛЕНИЯ СЕРИИ МХ

напор— **240 метров, производительность** — **до 15 м³ в минуту.** Разработаны для работы с высоким напором и обеспечивают большой срок эксплуатации. Новые высоконапорные насосы СЕРИИ МХ обладают защищенными рабочими колесами с большим количеством лопастей с МАКСИМАЛЬНОЙ В ОТРАСЛИ ЭФФЕКТИВНОСТЬЮ. Насосы СЕРИИ МХ имеют повышенную толщину стенок улитки, высококачественную конструкцию, рабочие колеса СА6NM и устанавливаются на горизонтальной раме с типом соединения SAE.

4622MX


6822MX



САМОВСАСЫВАЮЩИЕ НАСОСЫ ДЛЯ ПЕРЕКАЧКИ ОТХОДОВ

Горизонтальные центробежные самовсасывающие насосы Cornell с открытым рабочим колесом для работы с жидкостями, содержащими твердые вещества во взвешенном состоянии, воздух или растворенные газы.

CEVPXO3UDOEKT

ДРУГИЕ МОДЕЛИ

НАСОСЫ ДЛЯ ТРАНСПОРТА ПИЩЕВЫХ ПРОДУКТОВ

Благодаря инновационной конфигурации рабочего колеса Cornell с одним отверстием и уникальным смещенным каналом, насос для обработки пищевых продуктов Cornell можно использовать для транспортировки даже самых деликатных продуктов питания например: клюквы, вишни, салата, картофеля, моркови или даже живой рыбы; насос сбережет продукты от повреждений и обеспечит их целостность.

ГИДРАВЛИЧЕСКИЕ ПОГРУЖНЫЕ НАСОСЫ

В DuraSub™ от Cornell используется сверхмощный насос и опорная рама для прямого соединения к *гидравлическому мотору*. DuraSub™ имеет модульную конструкцию, которая позволяет использовать торцы стандартного насоса Cornell в качестве гидравлического погружного насоса.

- Доступны для большинства моделей насосов Cornell
- С гидравлическим двигателем
- Различные переходные пластины для установки на гидравлический двигатель
- Эффективная конструкция всасывающей зоны позволяет снизить потребление мощности

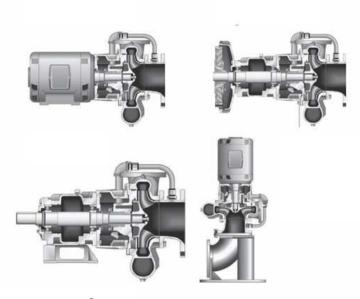
КАЧЕСТВЕННОЕ ОБОРУДОВАНИЕ

Мы верим в нашу продукцию и услуги. Мы стремимся развивать и поддерживать сотрудничество с нашими клиентами после приобретения продукции, предоставляя сервисы послепродажного обслуживания от компании НТЦ СЕЛЬХОЗПРОЕКТ.

Cornell Pump Company гарантирует отсутствие дефектов материалов и изъянов в изготовлении в течение двух лет с даты отгрузки оборудования, что является рекордом для отрасли.

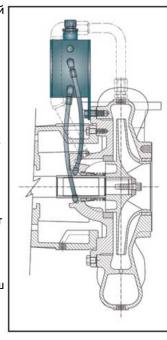
ГИДРОТУРБИНЫ

С экономичной гидротурбиной Cornell вам нужна не большая река. Уже при напоре 1,5 метра и потоке 340 литров в минуту турбина вырабатывает энергию, пригодную для использования. Турбины Cornell -просты, легки в установке и менее требовательны к техническому обслуживанию. Доступен широкий диапазон конфигураций и способов монтажа.

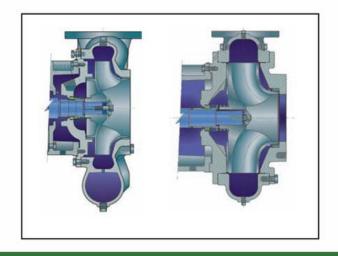


СЕЛЬХОЗПРОЕКТ

ОСОБЕННОСТИ КОНСТРУКЦИИ


МОНТАЖНЫЕ КОНФИГУРАЦИИ

Ирригационные насосы Cornell доступны в нескольких монтажных конфигурациях, включая горизонтальные и вертикальные насосы с непосредственным приводом на вал, монтируемые на станине и насосы с колоколообразным кожухом SAE, монтируемые непосредственно на двигатель.


CUCTEMA RUN-DRY™

Для ситуаций, где нобходимо использовать насос, работающий в сухом режиме, наиболее подходит система Run-Dry™ от Cornell, которая состоит из вспомогательного сальника и резервуара для масла, который подает смазку в зону торцевого уплотнения и предотвращает «сухое» использование. Сальник Run-Dry™ соединен со смазочным баком через отводящие и подводящие трубопроводы таким образом, что вращение вала обеспечивает непрерывную циркуляцию и охлаждение смазки и уплотняющих поверхностей. Благодаря системе Run-Dry™ Ваш насос может работать «всухую» несколько часов без повреждения торцевого уплотнения.

CYCLOSEAL®

Запатентованное Cornell уплотнение Cycloseal® (патент США №5 489 187), идеально подходящее для воды, в том числе для сточных вод, — независимое механическое уплотнение. Данная конфигурация не требует внешней промывки и избавляет от необходимости иметь трубопровод для промывки водой. В Cycloseal® отражательные и подающие лопатки создают перепад давления, благодаря которому твердые вещества и пар удаляются от уплотняющих поверхностей. Срок эксплуатации механического уплотнителя Cycloseal® может в 10 раз превышать срок эксплуатации обычного механического уплотнения.

REDI-PRIME®

Насосы Redi-Prime® от Cornell имеют увеличенный диаметр всасывающей линии, что позволяет обеспечить больший расход, снизить потери на трение и увеличить высоту всасывания. Система подсоса была разработана с соблюдением экологических стандартов, с использованием плавающего регулирующего шара с надежным уплотнителем и мембранного вакуумного насоса. С высотой всасывания до 8,4 метра, напором до 140 метров и производительностью более 75 кубометров в минуту.

В большинство насосов Cornell можно встроить систему Redi-Prime®.

CEVPXO3UDOEKT